

Universal Counter HM8122

\author{

- Frequency Range 0-1.6GHz; 3 Inputs
 - 9 Measuring Functions; Ext. Gate and Arming
 - Up to 9-digit Resolution at 1s Gate Time
 - 100 MHz Time Base with $\pm 0.5 \mathrm{ppm}$ Stability
 - Optional IEEE-488 Bus or RS-232 Interface
}

... when precision counts

The HM8122 is a feature packed Universal Counter and, like all other instruments in the $\mathbf{8 1 0 0}$ Series, it is prepared for operation in automated test systems as well as for laboratory bench top measurements. The instrument has three sensitive inputs and provides signal measurement capability from DC to $\mathbf{1 . 6} \mathbf{~ G H z}$.

An impressive $\mathbf{1 0 n s}$ resolution during single pulse measurement is made possible by using a 100 MHz reference oscillator. Resolution as fine as $\mathbf{1 p s}$ is obtained through time interval averaging. The HM8122 displays low frequency measurements with an $\mathbf{8}$-digit resolution at a 1 s gate time. Besides its nine basic functions, the HM8122 offers such practical features as a pre selectable number of pulses per rotation, offset, display hold, single shot measurement, external ports for gating, arming, gate view and trigger view. The rear panel inputs allow measurements of channel A gated by B. An integrated adjustment routine and extensive power up self test ensure proper and accurate operation of the counter.

Since any counter is only as good as its input circuitry, great care was taken in considering the technique of input signal conditioning.

The three signal inputs possess, depending upon frequency range, an input sensitivity of between $\mathbf{2 0} \mathbf{m V}$ and $\mathbf{1 0 0} \mathbf{m V}$. Channel A \& B have selectable low pass filter, switchable input coupling, two 20 dB attenuators per channel, and switchable trigger slope. This enhances trouble free operation with nearly all input signals. Automatic triggering can be turned off for complex signal measurements.
Any function of the Counter is controlled via the optional IEEE-488 or RS-232 Interface.

Option HO85

The standard version of the HM8122 already includes a high stability, oven controlled oscillator with an accuracy of $\pm 5 \times 10^{-7}$. The option HO85 with stability of $\pm 5 \times 10^{-9}$ is available for higher stability requirements.

Specifications HM8122

Input Characteristics (Input C)

Frequency Range: Sensitivity (RMS):	100 MHz to 1.6 GHz (20mV typ.) 30 mV to 1.3 GHz $(100 \mathrm{mV}$ typ.) 100 mV to 1.6 GHz		
Coupling: 50Ω nominal Impedance: AC Max. Input Voltage: $5 \mathrm{~V}\left(\mathrm{DC}+\mathrm{AC}_{\text {peak }}\right)$			
Input Characteristics:	External Reset	Reference	Gate/Arming
Input Impedance:	$4.7 \mathrm{k} \Omega$,	470 ,	$4.7 \mathrm{k} \Omega$
Max. Input Voltage:	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Sensitivity:		typ. $2 \mathrm{~V}_{\mathrm{pp}}$	-
High Level:	$>2 \mathrm{~V}$	-	>2V
Low Level:	$<0.5 \mathrm{~V}$	-	<0.5V
Min. Pulse Duration:	200 ns	-	50 ns
Input Frequency:	-	10 MHz	-
Min. Gate Time:	-	-	$20 \mu s$
Measurement Fun	ons		

Frequency A, B, C; Period A; Totalize A; RPM A; Ratio A/B; TI A/B; Pulse width; Totalize A during B; TI AVG A/B

Frequency A, B, C

LSD:
Resolution:
Accuracy:
$\left(2.5 \times 10^{-8} \mathrm{~s} \times\right.$ FREQ. $) /$ measuring time ± 1 or 2 LSD

Period A

Range:

LSD:
Resolution:
Accuracy:
$10000 \mathrm{sec}-6.66 \mathrm{~ns}$
($2.5 \times 10^{-8} \mathrm{~s} \times$ period) / measurement time ${ }^{* 1}$)
1 or 2 LSD
Accuracy: $\quad \pm$ (Resolution / Period + time base uncertainty + trigger error / measuring time)

Ratio A/B
 Ratio A/B

Frequency range:
LSD:
Resolution:
Accuracy:

DC to 80 MHz ($2.5 \times$ ratio) / (FREQ. A \times measuring time) ± 1 or 2 LSD

Input Characteristics (Input A / Input B)

0 to 150 MHz (DC coupled), 10 Hz to 150 MHz (AC coupled) 20 mV RMS (sine wave) DC to 80 MHz .80 mV pp (Pulse)

60 mV RMS (sine wave) 80 MHz to 150 MHz 5 ns Rise Time:
approx. 3 ns Input Noise:

AC or DC (switch selectable) Impedance: $\quad 1 \mathrm{M} \Omega \| 40 \mathrm{pF}(0.5 \mathrm{M} \Omega \| 80 \mathrm{pF}$ when Com. A / B is active) Trigger Level Range:
Auto Trigger: 0 V to $\pm 100 \mathrm{~V}$ (AC coupling)

V(DC AC peak) from 0 to 4 Hz declining to 8 V at 1 MHz
Trigger Slope:
Filter: Tri-state LED indicators
equency Range:
(20 mV typ.) 30 mV to 1.3 GHz $(100 \mathrm{mV}$ typ.) 100 mV to 1.6 GHz 50Ω nominal $5 \mathrm{~V}\left(\mathrm{DC}+\mathrm{AC}_{\text {peak }}\right)$

Gate/Arming
$4.7 \mathrm{k} \Omega$
$\pm 30 \mathrm{~V}$
$>2 \mathrm{~V}$
$<0.5 \mathrm{~V}$
50 ns
$20 \mu s$

Measurement Functions

Totalize A		
	Manual mode	Gated by external signal
Range:	DC to 150 MHz	DC to 150 MHz
Min. Pulse Duration:	10 ns	10 ns
LSD:	1 Count	1 Count
Resolution:	LSD	(resolution \pm ext. gate error \times Freq. A)/total
Accuracy:		
Pulse pair res.:	10 ns	10 ns
Ext. Gate Error:	-	100 ns

Time Interval / Time Interval Average

(Input $A=$ start, Input $B=$ stop)

LSD:
Resolution:
Accuracy:
(10 ns to 1 ps when averaged) 1 LSD (1 or 2 when averaged) \pm (Resolution + trigger error + systematic error)/Time interval \pm time base uncertainty (systematic error $<4 \mathrm{~ns}$)

Number of Averages: $\quad \mathrm{N}=$ Measuring time \times repetition rate
$N=1$ to $25 \quad$ LSD $=10 \mathrm{~ns}$
$N=26$ to $2500 \quad L S D=1 \mathrm{~ns}$
$N=2501$ to $250.000 \quad L S D=100$ ps
$N=250.001$ to 2.500.000 LSD $=10 \mathrm{ps}$
$N=>2.500 .000 \quad L S D=1 \mathrm{ps}$

RPM (Revolutions Per Minute)

NPR ${ }^{*}$ 2) presetting :
Gate Time:
LSD:
Resolution:
Accuracy:

1-65535 counts / revolution
330 ms fixed
$7.5 \times 10^{-8} \times$ revolution speed
1 or 2 LSD

Offset

Covers the whole measurement range.
Resolution:
same resolution as normal measurement.
If the actual gate time is modified, the offset resolution is the resolution of the reference value or the resolution of the current measurement, whichever is smaller.

Gate Time

Range:
$1 \mathrm{~ms}-10 \mathrm{sec}$ in 199 steps (Input A/B)
$2 \mathrm{~ms}-10 \mathrm{sec}$ (Input C)
External Gate Time:
Actual Measuring Time: (cannot be shorter than 1 period) min. $20 \mu \mathrm{~s}$
Gate time + start synchronization time + stop synchronization time + calculation time (approx. 10 ms) (synchronization times depend on input signal).

Time base

Frequency:

Stability:
Aging:
Warm up time:
Option HO85 (OCXO);

100 MHz clock rate; 10 MHz crystal $\pm 5 \times 10^{-7}$ between $10^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$
<2.5 ppm/year typ. 10 min . to specified accuracy $\pm 5 \times 10^{-8} ; 10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ $\pm 5 \times 10^{-9}$ per day; $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$

General

Display:
Power Requirements:
Operating Conditions:
Max. Rel. Humidity:
Dimensions:
Weight:
Safety:

9 digits LEDs (10.9 mm), sign and exponent
sign for negative offset
$115 / 230 \mathrm{~V} \pm 10 \%$; $45-60 \mathrm{~Hz}, 40$ VA $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ 10\%-90\%, no condensation $285 \times 75 \times 365 \mathrm{~mm}(\mathrm{WxHxD})$ approx. 4 kg
Class I, According to IEC 1010-1
*1) When the resolution exceeds the display range,
the displayed result is shifted to the right.
*2) NPR = Number of pulses per revolution

Optional Accessories:

HZ33, HZ34: 50Ω Coaxial cable BNC-BNC; HZ24: BNC 50Ω attenuators ($3 / 6 / 10 / 20 \mathrm{~dB}$)
HZ42: 19" rack mount kit; HZ72-S/L: Double shielded IEEE-488-Bus cable, 1m/1.5m.
HO85: OCXO, stability $\pm 5 \times 10^{-9} /$ day; HO88-2: IEEE-488 Interface; HO89-2: RS-232 Interface.

